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I. INTRODUCTION

In recent years, the availability of high-quality digitahroeras and audio recording devices coupled
with the rise of the Internet as a means of information dejivieas cause digital content to become
prevalent throughout society. Many governmental, legzakrgific, and news media organizations rely on
digital multimedia content to make critical decisions oruse as evidence of specific events. This proves
to be problematic, as the rise of digital media has coincigéti the widespread availability of digital
editing software. At present, a forger can easily maniguldigital content such as images or video to
create perceptually realistic forgeries. To avoid both amdssment and legal ramifications, many of these
organizations now desire some means of identifying altaratto digital multimedia content and verifying
its authenticity. As a result, the field of digital multimed@ensics has been born.

Digital multimedia forensics is the study and developmenteghniques to determine the authenticity,
processing history, and origin of digital multimedia carttevithout relying on any information aside from
the digital content itself. In the past, digital watermaikitechniques have been proposed as a means to
accomplish these tasks. For watermarking techniques tadmessful, however, an extrinsic watermark must
be inserted into the digital content by a trusted sourcerbeday manipulation occurs. This is unrealistic in
many scenarios, because the party that captures the digitent can alter it before inserting the watermark.
By contrast, digital forensic techniques operate by seéagctor intrinsic fingerprintsintroduced into digital
media by editing operations and the digital capture proitesl. Because most signal processing operations
leave behind unique intrinsic fingerprints, no universalhodtof detecting digital forgeries exists. Instead,
several forensic tests must be designed to identify the fimiopds of a variety of digital content editing
operations. It has been posited that if a large set of focem&thods are developed, it will be difficult for
a forger to create a digital forgery capable of fooling allefiosic authentication techniques [1].

Though existing digital forensic techniques are capable etbating several standard digital media
manipulations, they do not account for the possibility taati-forensicoperations designed to hide traces
of manipulation may be applied to digital content. In realit is quite possible that a forger with a digital
signal processing background may be able to secretly dewvaatdi-forensic operations and use them to
create undetectable digital forgeries. To protect agdimstscenario, it is crucial for researchers to develop
and study anti-forensic operations so that vulneralslifie existing forensic techniques may be known.
This will help researchers to know when digital forensic tessoan be trusted and may assist researchers
in the development of improved digital forensic techniquese study of anti-forensic operations may also
lead to the identification of the intrinsic fingerprints of afttiensic operations and the development of
techniques capable of detecting when an anti-forensicadiper has been used to hide evidence forgery.

We have developed a wide variety of digital multimedia faierand anti-forensic techniques. In Section
Il, we present the our work on the detection of image mantmrausing statistical intrinsic fingerprints.
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Fig. 1. Left: Histogram of a typical image. Right: Approximation of the hisémg at left by sequentially removing then
interpolating the value of each histogram entry.

In Section Ill, we discuss our work on anti-forensically reimg compression fingerprints from digital
images. We present our work on video frame deletion forenaiw anti-forensics in Section IV. Finally,
in Section V we discuss our work on evaluating the effectigsrg anti-forensic techniques and analyzing
the interplay between forensics and anti-forensics usamgeagtheory.

II. IMAGE FORENSICS VIASTATISTICAL INTRINSIC FINGERPRINTS

In this section, we discuss our forensic work aimed at dietgdigital image manipulation. Specifically,
we present methods designed to detect general forms glodsadl locally applied contrast enhancement,
and show how the detection of localized contrast enhanceoanbe used to identify cut-and-paste type
image forgeries [2] [3] [4]. We present a technique to jgirgktimate the contrast enhancement mapping
used to modify an image as well as the images pixel value driato before contrast enhancement [5].
Additionally, we present a method to detect the global aoldiof noise to a previously JPEG compressed
image by detailing the effect of noise on the fingerprint of @kn pixel value mapping applied to the
image in question [3] [4]. Each of these techniques identifpage manipulation by detecting the presence
or absence of the statistical intrinsic fingerprints introeldl into an image’s histogram by pixel value
mappings.

A. System Model

When analyzing a digital image, a histogrdrtl) of the color or gray level valuesrecorded at each
pixel can be generated by creatihggqually spaced bins which span the range of possible pixeésathen
tabulating the number of pixels whose value falls withing tange of each bin. Unless otherwise specified,
we will hereafter assume that all gray level values lie in $k&€P = {0,...,255}, all color values lie in
the setP?, and that all pixel value histograms are calculated usirgy lBs so that each bin corresponds
to a unique pixel value. After viewing the pixel value histagns of several camera generated images
corresponding to a variety of scenes, we have observedtbsd histograms share common properties. None
of the histograms contain sudden zeros or impulsive peakthdtfmore, individual histogram values do not
differ greatly from the histogram’s envelope. To unify tegsroperties, which arise due to observational
noise [6], sampling effects, and complex lighting envir@mis, we describe pixel value histograms as
interpolatably connectedWe define an interpolatably connected histogram as one wdmerehistogram
value k(1) can be approximated by({), the interpolated value of the histogram at pixel valuzlculated
using a cubic spline giveh(t) for all ¢t € P \l. The histogram of a typical unaltered image as well as its
approximationi, where each value df has been calculated by removing a particular value flothen
interpolating this value using a cubic spline, are shown m Ei As can be seen in this example, there is
very little difference between the image’s histogram asdajpproximation.
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Fig. 2. Pixel value histogram of an unaltered image (top left) and the saagei@fter contrast enhancement has been performed
(top right), as well as the magnitude of the DFT of the unaltered image'syhésto(bottom left) and the contrast enhanced image’s
histogram (bottom right).

B. Detecting Globally Applied Contrast Enhancement

Contrast enhancement is an image processing operation eoiymsed to compensate for poor lighting
conditions. It operates by applying a nonlinear mappindhtogixel values of an image in order to increase
their effective dynamic range. A wide variety of contragh@ncement mappings are commonly used, several
of which cannot be simply parametrically described. Eachhesé mappings, however, must necessarily
map multiple input pixel values to the same output pixel gallihis will introduce impulsive peaks and
zeros into the pixel value histogram of a contrast enhanced)e, as can be see in Figure 2 which shows
the histogram of an image before and after contrast enhatermhese peaks and zeros correspond to
the intrinsic fingerprints of contrast enhancement mappings

We have proposed a technique to detect these contrast emhantfingerprints using a frequency domain
representation of an image’s pixel value histogram. Bez#us pixel value histogram of an unaltered image
should be ‘smooth’, the Fourier transform of that imagestdgram should be a strongly low-pass signal.
Contrast enhancement fingerprints introduce energy intohtgle frequency components of an image’s
pixel value histogram due to their impulsive nature. Bothtlodse phenomena can be observed in the
bottom two plots of Figure 2. As a result, we detect contrastaanement by measuring the strength of
the high frequency components of an images pixel value driato, then comparing this measurement to
a predefined threshold.

To test of our contrast enhancement detection techniquepweiled a database of 341 unaltered images
consisting of many different subjects and captured undearity of light conditions. These images were
taken with several different cameras and range in size ft66% x 1000 pixels to 2592 x 1944 pixels.
The green color layer of each of these images was used to @esgeof unaltered grayscale images. We
applied the power law transformation defined as

m(l) = 255 <2l55>7 1)

to each of these unaltered grayscale images uswejues ranging from 0.5 to 2.0 to create a set of contrast
enhanced images. Additionally, we modified each unalteragsgale image using the nonstandard contrast
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Fig. 3. Contrast enhancement detection ROC curves for images altgragpower law transformation with (9.0 > v > 1.2,
and (c)0.5 > v > 0.9 as well as the mapping displayed in Fig. 3(a).

enhancement mapping displayed in Fig. 3(a). These imagesawenbined with the unaltered images to
create a testing database of 4092 grayscale images. Tatv#he performance of our contrast enhancement
detection technique on this testing set, each image wasifodasas altered or unaltered using a series of
decision thresholds. The probabilities of detectidpand false alarmP;, were determined for a series of
decision thresholds by respectively calculating the p@roé contrast enhanced images correctly classified
and the percent of unaltered images incorrectly classifieds@hesults were used to generate the series
of receiver operating characteristic (ROC) curves showrigs. 3(b) and (c). For each form of contrast
enhancement tested, our detection technique achieveédadd 0.99 at aP;, of approximately 0.03 or less.

C. Detecting Locally Applied Contrast Enhancement

Locally applied contrast enhancement can be defined as ag@\ydontrast mapping to a set of contiguous
pixels within an image. If the size of this set of pixels isgarenough for our pixel value histogram model
to remain valid, then when contrast enhancement is perfdringill introduce its fingerprint into the
histogram of this set’s pixel values. In light of this, we bBaproposed detecting locally applied contrast
enhancement by segmenting an image into a set of blocks pivéorming contrast enhancement detection
on each block. The blockwise detection results can be cordbimedentify image regions which show
signs of contrast enhancement.

In order to determine which block sizes are sufficient to penfeeliable detection and examine the
effectiveness of the local contrast enhancement detestibeame, we performed the following experiment.
Each of the 341 unaltered images from the test database lkx$@ni Section 11-B along with the power law
transformed images corresponding+toe= 0.5 through 0.9 were segmented into square blocks of varying
sizes. Each block was then classified as contrast enhancediltered using by our contrast enhancement
detection scheme using a variety of different thresholddsd-alarm and detection probabilities were
determined at each threshold and for every choice of blockvaere used to generate the set of ROC
curves shown in Fig. 4 for each value of which was tested. These ROC curves indicate that local
contrast enhancement can be reliably detected usingdesiicks sized least00 x 100 pixels. At a Py,
of approximately 5%, aP; of at least 95% was achieved usigg0 x 200 pixel blocks and aP; of at
least 80% was achieved using0 x 100 pixel blocks for each form of contrast enhancement tested.

In some scenarios, locally applied contrast enhancemeattittn can be used to identify other, more
obviously malicious image manipulations such as cut-aamstep forgery. Cut-and-paste image forgery
consists of creating a composite image by replacing a cootig set of pixels in one image with a set of
pixels corresponding to an object from a separate imagdelftwwo images used to create the composite
image were captured under different lighting environmeatsimage forger may need to perform contrast
enhancement on the pasted object so that lighting conditioatch across the composite image. Failure to
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Fig. 4. ROC curves obtained using different testing block sizes for imatiered by a power law transformation with= 0.5
(left), v = 0.7 (center), andy = 0.9 (right).
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Fig. 5. Cut and paste forgery detection example showing (a) the urthiteeme from which an object is cut, (b) the unaltered
image into which the cut object is pasted, (c) the composite image, (d) yed béockwise detections, (e) green layer blockwise
detections, and (f) blue layer blockwise detections. Blocks detectedraimsbenhanced are highlighted and boxed.

do this may result in a composite image which does not appdistic. Image forgeries created in this

manner can be identified by using localized contrast enhamaedetection to locate the cut-and-pasted
region. An example of a cut-and-paste image forgery in whigh pasted region has undergone contrast
enhancement is shown in Fig. 5 along with the localized cehahancement detection results obtained
from our proposed forensic technique. Adobe Photoshop wed toscreate the forged image shown in 5(c)
from the unaltered images shown in Figs. 5(a) and 5(b). Blacksesponding to contrast enhancement
detections are highlighted and outlined in black. In thiaraple, each of these blocks contain pixels that

correspond to the inauthentic object.
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Fig. 6. The pixel value histogram of an unaltered image (left), the cdrerdgancement mapping and its estimate (center), and
the unaltered pixel value histogram and its estimate (right).

D. Forensic Contrast Enhancement Mapping Estimation

Once digital image manipulation has been identified, the fandnsic task is to determine as much
information as possible about the unaltered image and tleeatpn used to modify it. In the case of
images exhibiting evidence of contrast enhancement, we Haveloped an iterative technique to jointly
estimate the contrast enhancement mapping used to modifnage as well as the images pixel value
histogram before contrast enhancement. This techniqueaigseby identifying an image’s pixel value
histogram entries most likely to correspond to contrasaeobment fingerprints, using these fingerprints
to estimate the contrast enhancement mapping, obtainiegtanate of the unaltered pixel value histogram,
then iteratively refining each estimate. Figure 6 shows an plamf a contrast enhanced image’s pixel
value histogram, as well a comparison of our algorithm'$neste of the original histogram and contrast
enhancement mapping to the true ones. As can be seen, welar® a@chieve a highly accurate estimate
of the contrast enhancement mapping and the unaltered ket histogram.

E. Detection of Additive Noise in Previously JPEG Compresseddmag

When creating a digital image forgery, noise may be addecdhtionage’s pixel values to disguise visual
traces of image forgery or an in attempt to mask statisticglefiprints left behind by other image altering
operations. Previous work has dealt with the detection ofen@idded to specific regions of an image
by searching for fluctuations in localized estimates of ang@w®signal to noise ratio (SNR) [7]. This
method fails, however, when noise has been globally addeahtomage because this will not result in
localized SNR variations. We have developed a techniquebbaymbetecting additive noise in previously
JPEG compressed images by applying a pixel value mapping iodge, then searching of the mapping’s
intrinsic fingerprint. The mapping is designed in such a way thaoise is not present, the mapping’s
fingerprint will take the form of a periodic modulating signaithin an image’s pixel value histogram. If
noise has been added to the image, this periodic fingerprihtbeiabsent. Because of the fingerprint's
periodic nature, we use a frequency domain representatitiredransformed pixel value histogram, where
the periodic signal takes the form of an spike centered affititgerprint's fundamental frequency. This
effect can be clearly seen in Figure 7.

To evaluate the performance of our additive noise detetiohnique, we compiled a set of 277 unaltered
images taken by four different digital cameras from uniquofacturers. These images capture a variety of
different scenes and were saved as JPEG compressed imaggeadincamera’s default settings. A set of
altered images was created by decompressing each imagademendently adding unit variance Gaussian
noise to each pixel value. These altered images were them ss/ditmaps, along with decompressed
versions of the original images, creating a testing dagb&$54 images. Next we used our additive noise
detection test to determine if noise had been added to eaabeirin the database. Detection and false
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Fig. 8. Additive noise detection ROC curve for images which were JPHEpoessed using default camera settings then altered
by adding unit variance Gaussian additive noise.

alarm probabilities were determined at a series of deciioesholds and used to create an ROC curve
showing the performance of our additive noise detectiomritlyn. This ROC curve is displayed in Fig.
8. A P, of approximately 80% was achieved at a false alarm rate less @.4%. When thé;, was held
less than 6.5%, thé’; increased to nearly 99%. These results indicate that ouctitetescheme is able
to reliably detect additive noise in images previously JPE@messed using a camera’s default settings.

1. ANTI-FORENSICS OFDIGITAL IMAGE COMPRESSION

In this section we discuss our work on anti-forensically o&mng compression fingerprints from digital
images. We have developed a generalized framework to remmage compression fingerprints from trans-
form coders [8] and shown how this framework can be adaptadrtmve JPEG compression fingerprints
[8], [9] and DWT-based compression fingerprints [8], [10].ditbnally, we have developed a technique to
remove blocking artifacts left by transform coders and shdww image compression anti-forensics can
be used to make undetectable image forgeries [8], [11].

A. JPEG Compression Anti-Forensics

When a digital image is stored using JPEG compression, it isdaginented int® x 8 pixel blocks,
then the DCT of each block is performed. Each block of DCT cadefiis is quantized, then reordered
into a single bitstream which is losslessly compressedingudecompression, each step in the process
is inverted with the exception of quantization. Becausengjmation is not invertible, dequantization is
performed by multiplying each quantized coefficient by thargization step size. This process causes the
DCT coefficients of the decompressed image to be clusterathdrimteger multiples of the quantization



10000 1500
1500
8000

1000

1000 6000

4000

i " 1

—200 -200 0 200 400 —200 -200 0 200 400 —200 -200 0 200 400
DCT Coefficient Value DCT Coefficient Value DCT Coefficient Value

Number of Coefficients
o
o
o

Number of Coefficients

500

Number of Coefficients

Fig. 9. Histogram of (2,2) DCT coefficients taken from an uncomgm@s&rsion of the image shown in Fig. 10 (left), the same
image after JPEG compression (center), and an anti-forensically ewdifipy of the JPEG compressed image(right).

_adl

Fig. 10. Left: JPEG compressed image using a quality factor of 65. Régtii:forensically modified image.

step size as can be seen in Figure 9. These quantization @riifmcespond to the intrinsic fingerprints of
JPEG compression which are used by several existing imagesioralgorithms.

We have proposed an anti-forensic technigue designed toverdPEG compression fingerprints. It
operates by first obtaining an estimate of the unquantized D@3fficient distribution from the quan-
tized DCT coefficients. Next, anti-forensic dither is addedttie quantized DCT coefficients to remove
guantization artifacts. The anti-forensic dither disttiba is chosen based on the estimated unquantized
DCT coefficient distribution. Figure 9 shows an example of @olgisam of anti-forensically modified DCT
coefficients which contain no JPEG compression fingerprintshEuriore, this technique introduces very
little distortion into the anti-forensically modified imagehich can be seen in Figure 10 which shows a
JPEG compressed image along with the same image after amtisiordither has been added to its DCT
coefficients.

To test the effectiveness of our anti-forensic operationaolarger scale, we compressed then anti-
forensically modified a set of 1338 images taken from the Umressed Colour Image Database [12].
These images were compressed using quality factors of 90an®,50. After each image was anti-
forensically modified, we used the algorithm described in] 8 estimate the quantization table used
during compression and classify each image as never-casgateor previously JPEG compressed. Images
were only classified as never-compressed if every quardizatible entry was estimated as one or if no
estimate could be obtained. We should note that performamgsification in this manner significantly biases
the output towards deciding that an image was previously JP&Epessed. Despite this, the classifier
was unable to detect previous JPEG compression in 100% of thoeemsically modified images.
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Fig. 11. Histogram of wavelet coefficients from the fourth leMél subband of a four level wavelet decomposition of the image
shown in Fig. 12 (left), the same image after SPIHT compression (¢emied the compressed image after anti-forensic dither
has been applied (right).

Fig. 12. Left: An image compressed using the SPIHT algorithm at a bitofaBebits per pixel before the use of entropy coding.
Right: The same image after anti-forensic dither has been applied to itdetvavefficients.

B. Wavelet-Based Image Compression Anti-Forensics

Wavelet-based image compression leaves behind forelyssigihificant intrinsic fingerprints in a similar
manner to JPEG compression. When an image undergoes waastt-bmage compression, its discrete
wavelet transform (DWT) is first computed, resulting in sel/stdbbands of wavelet coefficients. A tree
structure is built out of the wavelet coefficients such thatldast significant bits of each coefficient occur
at the end of each branch. Compression is achieved by angtigis tree structure into a single bitstream,
then truncating it so that only a fixed number of bits are reiriThis has the same effect as applying
guantization to each DWT subband and causes the compresseasdetvcoefficients to cluster around a
small set of quantized values as shown in Fig. 11. Existingniceschemes use these artifacts to test for
evidence of prior wavelet-based compression within imdfés

We have designed an anti-forensic technique designed towemwavelet compression artifacts from
previously compressed images. Our technique is similaratuine to the one which we have proposed to
remove DCT quantization artifacts from JPEG compressed imdegm each DWT subband, we first use
the compressed wavelet coefficients to estimate the dittsibof wavelet coefficients before compression.
We then add anti-forensic dither to each wavelet coefficiafitere the anti-forensic dither distribution
is chosen using these estimates. Results indicate that ethonh is capable of removing compression
artifacts from each wavelet subband’s histogram of coeffisi@s can be seen in Fig. 11. Fig. 12 shows
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Proposed Method Liew Zhai
Quality | s =3, s =3, s =2, & Yan et al.
Factor | 02 =3 | 02 =2 | ¢® =2 [15] [16]

90 0.0% 0.0% 0.0% 70.1% | 99.6%
70 0.0% 0.0% 14.8% 99.2% | 99.6%
50 0.0% 0.9% 62.7% 98.8% | 99.6%
30 3.3% 23.0% | 93.4% 99.6% | 98.8%
10 97.9% | 97.9% | 100.0% | 100.0% | 82.8%

TABLE |
BLOCKING ARTIFACT DETECTION RESULTS

Fig. 13. Results of the proposed anti-forensic deblocking algorithm apfie typical image (top left) after it has been JPEG
compressed using a quality factor of 90 (top center), 70 (top left), 6&dim left), 30 (bottom center), and 10 (bottom right)
followed by the addition of anti-forensic dither to its DCT coefficients.

that very little visual distortion is introducied into antaforensically modified image. Additionally, we
have performed a larger scale test in which we compresseti3B& images in the Uncompressed Colour
Image Database using the SPIHT algorithm and used the fordasictor developed by Liet al. to test
for evidence of compression. In this test, we were able td tho® forensic algorithm into classifying an
image as never-compressed 99.8% of the time.

If a previously JPEG compressed image is to be passed off asmxiag undergone compression, JPEG
blocking artifacts must be removed from the image after-fiménsic dither has been applied to its DCT
coefficients. Though a number of deblocking algorithms hawnl@oposed since the introduction of the
JPEG compression standard, the majority of these are illcstmteanti-forensic purposes. In order for an
anti-forensic deblocking operation to be successful, isitmamove all visual and statistical traces of block
artifacts without resulting in forensically detectableanhges to an image’s DCT coefficient histograms. By
contrast, existing deblocking algorithms are designedriy cemove visible traces of blocking artifacts,
particularly in heavily compressed images, and do not gmesitleration to the forensic detectability of
compression artifacts in their output images. We proposargifforensic technique that removes statistical
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traces of JPEG blocking artifacts from an image to which amtfisic dither has already been added. This
is accomplished by first median filtering the image then addiagigSian white noise. Both the support

of the median filters and the variance of the noige€ are chosen based on the strength of the blocking
artifacts.

To demonstrate the effectiveness of this anti-forensidabéing operation as well as to illustrate its
advantages over several existing deblocking algorithneshawe tested its ability to deceive the the forensic
JPEG blocking artifact detector proposed in [13] along with dleblocking algorithms recently proposed in
[15] and [16]. To do so, we compressed then deblocked eadted44 images in the Uncompressed Colour
Image Database [12]. Table | shows JPEG blocking artifactctieteresults obtained from our tests. These
results clearly demonstrate that when the parameatarsdo? are chosen properly, our proposed algorithm
is capable of removing statistical traces of blocking adi$ from images previously JPEG compressed at
quality factors of 30 and above. Furthermore, these resutlicate that while the algorithms presented in
[15] and [16] are able to remove visual traces of blockingfauts, they do not entirely remove all statistical
traces and are not appropriate for anti-forensic purpdsegsual comparison of images deblocked using our
proposed technique suggests that compression artifattseceemoved from images previously compressed
using quality factors of 50 or higher without introducingysificant visual distortion.

C. Undetectable Image Tampering Using Anti-Forensics

We have demonstrated that our DCT compression artifact valhrtechnique and our proposed anti-
forensic deblocking technique can be used to fool a variétymage forensic algorithms. Techniques
have been proposed to detect a second application of JPEG essigor to an image previously JPEG
compressed [7], [17]. By applying our anti-forensic tecjugs before recompression, we are able to prevent
the occurance of double compression fingerprints. Becaust digital cameras make use of proprietary
guantization tables, an image’s compression history camsbd to help identify the camera used to capture
it [18]. We are able to wipe away an image’s compression hysasing our anti-forensic techniques and
insert a fake one. This allows us to falsify the originatingeaa of a digital image. Furthermore, techniques
have been proposed to identify cut-and-paste image fagéy detecting spatially localized discrepancies
in an image’s JPEG compression signature [19], [20]. We hareodstrated that our proposed anti-forensic
operations can be used to successfully remove the fingesphiat each of these techniques rely on [8],
[11].

IV. VIDEO FRAME DELETION FORENSIC ANDANTI-FORENSICS

To verify the authenticity of digital video files, digital fensic techniques have been developed to detect
video manipulation and identify digital video forgeriesf @articular importance is the detection of video
frame deletion or addition and recompression. Frame delatiay be performed by a video forger who
wishes to remove certain portions of a video sequence suahpasson’s presence in a surveillance video.

In prior work, Wang and Farid demonstrated that frame dafetir insertion followed by recompression
introduces a forensically detectable fingerprint into MPEGewid21]. Their work, however, relies on
human inspection of the P-frame prediction error sequencietect frame deletion and cannot be applied
to newer video coders that used variable length group ofimcfGOP) sequences. We have developed a
new theoretical model of video frame deletion fingerprintg. Nélve used this to create new automatic frame
deletion detection techniques that do not rely on humaneictspn and are suitable for use with newer
video coders that use variable GOP lengths [22]. Additignale developed an anti-forensic technique
capable of removing frame deletion fingerprints from a digitdeo [22], [23]. Furthermore, we used our
knowledge of how a forger is able to anti-forensically mgdif video to create a technique to detect the
use of frame deletion anti-forensics [22], [23].
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Fig. 14. P-frame prediction error sequence (top left) and the magndtidls DFT (bottom left) obtained from an unedited,
MPEG compressed version of the ‘Carphone’ video sequence alithghe P-frame prediction error sequence (top right) and the
magnitude of its DFT (bottom right) obtained from the same video after frdehetion followed by recompression.

A. Frame Deletion Detection

Due to the size of uncompressed digital video files, virtuallydigital video undergoes compression
during storage or transmission. Video encoders exploitimdency between frames by predicting certain
frames from others, then storing the prediction error. Tevent error propagation, the video sequence
is divided into segments, where each segment is referred togroup of pictures (GOP), during MPEG
video compression. When frames are deleted from a digitidosithe sequence of frames is shifted. During
recompression, frames from different initial GOPs will bewgped together in each new GOP. This causes
an increase in the prediction error for P-frames predictedsascold GOPs. These spikes in the sequence
of P-frame prediction errors(n), which can be seen in Fig. 14, are used as frame deletion firgestpr

If the video coder used to compress the video uses fixed len@ia &quences, we have demonstrated
that frame deletion fingerprints have the following propeerti

Property 1. The temporal fingerprint's repetitive pattern corresponda ttisproportionate increase in
e(n) exactly once per fingerprint period.

Property 2: The periodT" of the temporal fingerprint is equal to the number of P-framdkiwia GOP.

Property 3: Define the phase of the temporal fingerprint as the number of P-frames within aPGO
before the increase iv(n) due to frame deletion. The phase is determined by the equatien|A|/np],
wherenp is the number of P-frames within a GQAR, is the set of frames at the beginning of each GOP
that belonged to the same GOP during the initial applicatiboompression|.4| denotes the cardinality
of A, and|-] denotes the floor operation.

We have used these properties to create a mathematical widiiae deletion fingerprints. This model
identifies the period of frame deletion fingerprints and laratf a peak in the DFT of the prediction error
sequence cause by frame deletion fingerprint. We then fotetuframe deletion as a hypothesis testing
problem and used our model to create an automatic frameiateld¢tection technique suitable for videos
compressed using fixed length GOPs. Additionally, we contdtlia model of frame deletion fingerprints
when the video coder does not use a fixed length GOP. In this tasee deletion fingerprints are not
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Fig. 15. ROC curves for our frame deletion detector designed to openatédeos with fixed length GOPs (left) and variable
length GOPs (right) obtained by testing against different amounts fratetiah and addition.

periodic. Using this model, we constructed a frame deletietection technique capable of operation on
videos compressed by modern coders that allow for varialid® G&ngths.

To test the forensic effectiveness of our proposed frametidal detectors, we first created a database of
forged videos. To do this, we deleted 3, 6, and 9 frames frab#ginning of each of 36 unaltered standard
video sequences compressed using a fixed length GOP, thempeessed each video. This corresponded
to removing 1/4, 1/2, and 3/4 of a GOP respectively. To teairesy frame addition, we added 6 frames to
the beginning of each unaltered video sequence comprestiechixed length GOP, then recompressed
these videos. Additionally, we deleted 6 frames from theewglcompressed using randomly varying GOP
lengths. We then used each of our proposed detection tagmig conjunction with a series of different
decision thresholds to determine if frame deletion or aoidihad occurred in each video. The results of
these tests were used to create the ROC curves for eachadesdcivn in Fig. 15. We can see from
these ROC curves that both detectors’ performance remaimsistent regardless of the number of frames
deleted. Furthermore, we can see that both detectors wezd@blchieve an average; of at least 85%
at a false alarm rate less than 5%. Both detectors also achi¥; of at least 90% at a false alarm rate
less than 10%. These results indicate that both detectorbeaised to reliably detect frame deletion.

B. Frame Deletion Anti-Forensics

If a forger wishes to undetectably delete a sequence of gdmen a digital video, they must ensure that
frame deletion fingerprints do not occur in the videos P-franegligtion error sequence. We have developed
an anti-forensic technique to prevent these fingerprints fozcurring. Our anti-forensic operation works
by modifying the encoding process so that the P-frame piiedietror sequence matches a target prediction
error sequence that does not contain the temporal fingertigt value ofe(n) is increased to the target
value é(n) for a given P-frame by changing the frame’s predicted value imanner that increases the
prediction error. Since the anti-forensically modified videast be capable of being decompressed by a
standard MPEG decoder, we accomplish this modifying the motectors of each frame’s macroblocks
in order to increase the prediction error. After this is donew prediction error values are obtained
and stored for each macroblock whose motion vectors arefieddWe note that though the prediction
error is increased for an anti-forensically modified P-frathe,decompressed P-frame remains essentially
unchanged by anti-forensic modification because the newighi@d error is stored during compression,
then added back to the new predicted frame during decomepness
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Fig. 16. P-frame prediction error sequences (top row) and the magsitof their respective DFTs (bottom row) obtained from
an untampered MPEG compressed version of the ‘Foreman’ videoc@igafmn), as well as from the same video after the first
six frames were deleted followed by recompression without anti-fazensdification (middle column) and with the use of our
proposed anti-forensic technique (right column).

To evaluate the performance of our proposed frame deletitirf@ensic technique, we deleted six
frames from each unaltered video compressed using a fixed @@fuse, then recompressed each video
while applying our anti-forensic technique. An example ygital results achieved by our proposed anti-
forensic technique is shown in Fig. 16. This figure displays tifeaRe prediction error sequence taken
from an untampered MPEG compressed version of the ‘Foremdrbyias well as the P-frame prediction
error sequences obtained after deleting the first six fraimes tecompressing the video with and without
applying our anti-forensic temporal fingerprint removalhigique. Frame deletion fingerprints features
prominently in the prediction error sequence of the videavhiich frames are deleted without the use of
our anti-forensic technique, particularly in the frequedomain. By contrast, these fingerprints are absent
from the prediction error sequence when our anti-forensahnique is used to hide evidence of frame
deletion.

Additionally, we examined the ability of our proposed diotiensic technique to fool each of our
automatic frame deletion detection techniques. To dowes)sed both of our proposed detection techniques
to classify each video in our databases of 36 unaltered arsh@86orensically modified videos as unaltered
or one from which frames had been deleted. We used this dgentrate a new set of ROC curves for each
of our frame deletion detection techniques when frame ideldtas been disguised using anti-forensics.
These ROC curves are displayed in Fig. IV-B. In this figure, thghdd line represents the performance
of a decision rule that randomly classifies a video as forget wiprobability equal taPs,. Reducing a
detection technique’s performance to this level corredpdo making it equivalent to a random guess. As
we can see from Fig. IV-B, both frame deletion detection tapes perform at or near this level when
our anti-forensic technique is applied to a video.

C. Detecting the Use of Frame Deletion Anti-Forensics

In order to remove frame deletion fingerprints from the P-frgmnediction sequence of a video, that
video’s motion vectors must be altered in order to incredwe drediction error. Despite this, the true
motion present in the video does not change. As a resulte tisen discrepancy between many of the
motion vectors stored in an anti-forensically modified videwd the true motion of that video scene.
This is not the case for an unaltered video because normab \édeoders will attempt to estimate scene
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Fig. 17. Experimental results showing ROC curves for our fixed G@médr deletion detectafs;..q and our variable length
GOP frame deletion detectdt,,, obtained by testing on anti-forensically modified videos.

motion as accurately as possible in order to minimize eaamdts prediction error. Accordingly, these
discrepancies between a video’s stored motion vectors famadtual motion of the scene are fingerprints
left by frame deletion anti-forensics. We have designedhrtigjue to detect the use of frame deletion anti-
forensics. Our detection technique operates by compartmrgressed video’s P-frame motion vectors to
an estimate of the true motion present in the video scene.iJltisne by first decompressing the video in
guestion, then performing motion estimation on the videolitain a new set of row and column motion
vectors.

In order to evaluate the performance of our technique desigao detect the use of frame deletion anti-
forensics, we re-examined the videos in our database of aiemed and 36 anti-forensically modified
MPEG-2 compressed videos. We used our proposed detectorsgifglaach video as unmodified or anti-
forensically modified , then used these results to generadr@®C curve shown in Fig. 18. The results
of this experiment show that our proposed detector achipeefitct detection (i.e. &; of 100% at aFy,
of 0%). These results are slightly misleading, however, beeahe motion vectors of the videos in the
unaltered database are obtained using an exhaustive séaneality, many video encoders use efficient
algorithms to peform motion estimation. To evaluate thégrarance of our proposed frame deletion anti-
forensics detection technique under less favorable ciondit we repeated the previous experiment using
the three step search algorithm proposed by Zhu and Ma [24hgleompression.

We can see from Fig. 18 that the performance of our proposedtietis degraded in this scenario. While
the detection of frame deletion anti-forensics can stillpeeformed, it must be done with a higher false
alarm rate. This suggests that if a forensic investigatoegimum acceptable false alarm rate is sufficiently
low, a video forger using anti-forensics is likely to avoietéction. To mitigate this, a forensic investigator
may wish to repeat frame deletion anti-forensics deteatising a decision threshold corresponding to a
higher false alarm rate, but not immediately assume thactiens correspond to forged videos. Instead,
these videos can be flagged for closer investigation usingiada forensic techniques.

V. EVALUATION OF ANTI-FORENSICS AND THETRADE-OFF BETWEEN FORENSICS AND
ANTI-FORENSICS

In the past, the performance of digital forensic technicuesbeen measured using traditional tools from
decision theory. While these tools can adequately evafoagmsic techniques, they often are poorly suited
to measure the performance of anti-forensic operationsekample, should a missed forgery detection in
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Fig. 18. ROC curves for the anti-forensics deteclgr, when tested on video data compressed using an exhaustive search to
determine motion vectors and video data encoded using a three step metion search algorithm.

an anti-forensically modified file be counted the same as onehichnathe file was not anti-forensically
modified? If an anti-forensic operation is able to succelsfaimove fingerprints left by a particular forgery
operation but introduces new fingerprints of its own, how doewaluate its effectiveness?

We have addressed these problems by developing a set ofigaebrto evaluate the performance of
anti-forensic operations [22], [25]. Additionally, we ructed a game theoretic framework to evaluate the
dynamics between a forger and a forensic investigator [28], This framework can be used to determine
the probability that a forgery will be detected when both @év and forensic investigator are using optimal
anti-forensic and forensic detection strategies.

A. Performance Analysis of Anti-Forensics

To properly evaluate the performance of an anti-forenstbrigue, we have developed a new measure
known as theanti-forensic susceptibilityof a forensic technique to anti-forensics. This measuredavoi
unintentional bias towards overestimating an anti-foieaperation’s performance by counting only missed
forensic detections caused by anti-forensics.

The anti-forensic susceptibility is a measure between 0 aofdHe decrease in effectiveness of a forensic
detector caused by the use of an anti-forensic operatias.defined as decrease in a forensic detection
technique’s probability of detection caused by the use tiffarensics divided by the maximum decrease
in the forensic detection techniques’s probability of détan that an anti-forensic operation needs to cause
in order to render forensics ineffective. This correspordthe ratioA/B in Fig. 19.

We measured the anti-forensic susceptibility to measueepirformance of our video frame deletion
anti-forensic technique discussed in Section IV-B. Thesealteare displayed in Fig. 20. These results
show that for allPy, < 80%, our anti-forensic technique acheived an anti-forenssceptibility of .7 or
greater. Furthermore, for aly, < 20%, the frame deletion detector performs no better than a rando
decision if anti-forensics is used.

B. Game Theoretic Analysis of the Trade-off Between ForensidsAati-Forensics

A forger may choose to reduce the strength of fingerprints bgfttheir anti-forensic operation by
decreasing the strength at which they apply anti-forendibey must be careful, however, because this
will cause a corresponding increase in the strength of theipatation fingerprints that remain after anti-
forensics has been used. The forensic investigator, medmwhust ensure that the combination of the
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Fig. 19. Example relating the anti-forensic effectiveness of an arginfic operation to the ROC curves achieved by a forensic
technique when anti-forensics is and is not used. The anti-forensictigéiness at a given false alarm level is the ratjaB.
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Fig. 20. Experimental results showing anti-forensic susceptibility plotéréone deletion detection using our fixed GOP detector
dfizea and variable GOP length detecigs, obtained by testing on anti-forensically modified videos.

false alarm rates from their techniques to detect editind) tae use of anti-forensics is below a constant
false alarm rate. As a result, the forger and forensic imya&ir must both balance a set of trade-offs that
depend upon the actions of the other party.

We have developed a game theoretic framework to evaluatatémplay between a forger and a forensic
investigator. In this framework we define the utility of thedasic investigator as the probability that they
will detect either forgery fingerprints or fingerprints left biye use of anti-forensics. The utility of the
forger is negative one times the utility of the forensic istigator minus a penalty term for perceptual
distortion introduced into the forgery by the use of antefusics. These utility functions can be used to
identify the Nash equilibrium strategy of both the forgeddorensic investigator. If one player operates
at their Nash equilibrium strategy, the other player gainsadvantage by choosing any other strategy,
thus both players have no incentive to deviate from the Naghlibrium strategies. If no closed for
expression for these utilities exist, the Nash equilibiga de determined numerically. Furthermore, by
determining the probability of forgery detection at the Najuilibrium for each total false alarm level
between zero and one, a new ROC curve can be constructednghtivei forensic investigator’s ability to
detect forgeries if both players act rationally. We defing RDC curve as thBlash equilibrium receiver
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Fig. 21. Nash equilibrium ROC curve for video frame deletion detection.

operating characteristic curyeor NE ROC curve.

We used our game theoretic framework to determine the pilitgabf forgery detection at Nash
equilibrium for the problem of video frame deletion. To dasthwe modified our anti-forensic technique
to operate at variable strengths by making the anti-foceirgirease in each P-frame’s prediction error
adjustable. We then modified each video with several diffeaeti-forensic strengths and performed frame
deletion and anti-forensics detection as before. This @tbus to numerically identify the Nash equilibrium
strategies for a range of constraints on the forensic ifgesit’s total false alarm rate between 0% and
100%. We used these results to create the NE ROC curve digplayig. 21. From this curve we can see
that if the forensic investigator must operate with a totalbability of false alarm constraint of 10% or
less, frame deletion forgeries are difficult to detect. If thieensic examiner is able to relax their probability
of false alarm constraint to roughly 15% or greater, theny thi¢l be able to detect frame deletion forgeries
at a rate of at least 85%.
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